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Abstract

In this note, we give an explicit counterexample to the simple loop conjecture for representations
of surface groups into PSL(2, R). Specifically, we use a construction of DeBlois and Kent to show
that for any orientable surface with negative Euler characteristic and genus at least 1, there are
uncountably many non-conjugate, non-injective homomorphisms of its fundamental group into
PSL(2, R) that kill no simple closed curve (nor any power of a simple closed curve). This result is
not new – work of Louder and Calegari for representations of surface groups into SL(2, C) applies
to the PSL(2, R) case, but our approach here is explicit and elementary.

1 Introduction

The simple loop conjecture, proved by Gabai in [Gabai 1985], states that any non-injective homo-
morphism from a closed surface group to another closed surface group has an element represented
by a simple closed curve in the kernel. It has been conjectured that the result still holds if the
target is replaced by the fundamental group of an orientable 3-manifold (see Kirby’s problem list in
[Kirby 1993]). Although special cases have been proved (e.g. [Hass 1987, Rubinstein and Wang 1998]),
the general hyperbolic case is still open.

Minsky [2000] asked whether the conjuecture holds if the target group is instead SL(2,C). This
was answered in the negative by Cooper and Manning with the following theorem.

Theorem 1.1. [Cooper and Manning 2011]. Let Σ be a closed orientable surface of genus g ≥ 4.
Then there is a homomorphism ρ : π1(Σ)→ SL(2,C) such that

1. ρ is not injective

2. If ρ(α) = ±I, then α is not represented by a simple closed curve

3. If ρ(α) has finite order, then ρ(α) = I

The third condition implies in particular that no power of a simple closed curve lies in the kernel.

Inspired by this, we ask whether a similar result holds for PSL(2,R), this being an intermediate
case between Gabai’s result for surface groups and Cooper and Manning’s for SL(2,C). Techniques of
Cooper and Manning’s proof do not seem to carry over directly to the PSL(2,R) case – their work
involves both a dimension count on the SL(2,C) character variety and a proof showing that a specific
subvariety is irreducible and smooth on a dense subset, and complex varieties and their real points
generally behave quite differently. However, we will show here with different methods that an analog
to Theorem 1.1 does hold for PSL(2,R).

While this note was in progress, we learned of work of Louder and Calegari (independently in
[Louder 2011] and [Calegari 2011]) that can also be applied to answer our question in the affirmative.
Louder shows the simple loop conjecture is false for representations into limit groups, and Calegari gives
a practical way of verifying no simple closed curves lie in the kernel of a non-injective representation
using stable commutator length and the Gromov norm.
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The difference here is that our construction is entirely elementary. We use an explicit representation
found in [DeBlois and Kent 2006] (which uses work from [Goldman 1988] and [Shalen 1979]), and we
verify by elementary means that this representation is non injective and kills no simple closed curve.
Our end result parallels that of Cooper and Manning but also include surfaces with boundary and all
genera at least 1:

Theorem 1.2. Let Σ be an orientable surface of negative Euler characteristic and of genus g ≥ 1,
possibly with boundary. Then there is a homomorphism ρ : π1(Σ)→ SL(2,R) such that

1. ρ is not injective

2. If ρ(α) = ±I, then α is not represented by a simple closed curve

3. In fact, if α is represented by a simple closed curve, then ρ(αk) 6= I for any k ∈ Z.

Moreover, there are uncountably many non-conjugate representations satisfying 1. through 3.

In the case of a non-orientable surface, the appropriate target group is PGL(2,R), as the fundamental
group of a non-orientable hyperbolic surface can be represented as a lattice in PGL(2,R). This again
gives an intermediate case between the simple loop conjecture for representations into surface groups
and into PSL(2,C). We have the following direct generalization of Theorem 1.2, with essentially the
same proof.

Theorem 1.3. Let Σ be a non-orientable surface of negative Euler characteristic and of non-orientable
genus g ≥ 2, not the punctured Klein bottle nor the closed non-orientable genus 3 surface. Then there
are uncountably many representations ρ : π1(Σ)→ PGL(2,R) satisfying conditions 1. through 3. of
Theorem 1.2.

See section 3 for a comment on the exceptional cases of the punctured Klein bottle and closed,
non-orientable genus 3 surface.

2 Proof of Theorem 1.2

We describe a family of (non-injective) representations constructed in [DeBlois and Kent 2006] based
on a construction of [Goldman 1988]. We will then show that this family contains infinitely many
non-conjugate representations with no simple closed curve in the kernel.

Let Σ be an orientable surface of genus g ≥ 1 and negative Euler characteristic, possibly with
boundary. Assume for the moment that Σ is not the once-punctured torus – Theorem 1.2 for this case
will follow easily later on.

Let c ⊂ Σ be a simple closed curve separating Σ into a genus 1 subsurface with single boundary
component c, and a genus (g−1) subsurface with one or more boundary components. Let ΣA denote the
genus (g − 1) subsurface and ΣB the genus 1 subsurface. Finally, we let A = π1(ΣA) and B = π1(ΣB),
so that π1(Σ) = A∗CB, where C is the infinite cyclic subgroup generated by the element [c] represented
by the curve c. We assume that the basepoint for π1(Σ) lies on c.

Let x ∈ B and y ∈ B be generators such that B = 〈x, y〉, and that the curve c represents the
commutator [x, y]. See Figure 1.

Fix α and β in R \ {0,±1}, and following [DeBlois and Kent 2006] define φB : B → SL(2,R) by

φB(x) =
(
α 0
0 α−1

)
φB(y) =

(
β 1
0 β−1

)
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Figure 1: Decomposition of Σ and curves representing generators x and y for B

We have then

φB([x, y]) =
(

1 β(α2 − 1)
0 1

)
so that φB([x, y]) is invariant under conjugation by the matrix λt :=

(
1 t
0 1

)
.

After projecting these matrices to PSL(2,R) we have a representation B → PSL(2,R) which is
upper triangular, hence solvable, and therefore non-injective. Abusing notation, we let φB denote this
representation.

Now let φA : A→ PSL(2,R) be Fuchsian and such that the image of the boundary curve c under
φA agrees with φB([x, y]). That such a representation exists is standard – ΣA has negative Euler
characteristic and therefore admits a complete hyperbolic structure. The image of [c] under the
corresponding Fuchsian representation is a parabolic element of PSL(2,R), so after conjugation we
may assume that it is equal to φB([x, y]), since β(α2 − 1) 6= 0.

Finally, we combine φA with conjugates of φB to get a one-parameter family of representations
φt : π1(Σ)→ PSL(2,R) as follows. For t ∈ R and g ∈ π1(Σ) = A ∗C B, let

φt(g) =
{

φA(g) if g ∈ A
λt ◦ φB(g) ◦ (λt)−1 if g ∈ B

This representation is well defined because φB([x, y]) = φA([x, y]) and is invariant under conjugation
by λt.

Our next goal is to show that for appropriate choice of α, β, and t, the representation φt satisfies the
criteria in Theorem 1.2. The main difficulty will be checking that no element representing a simple closed
curve is of finite order. To do so, we employ a stronger form of Lemma 2 from [DeBlois and Kent 2006].
This trick originally comes from the proof of Proposition 1.3 in [Shalen 1979].

Lemma 2.1. Suppose w ∈ A∗CB is a word of the form w = a1b1a2b2...albl with ai ∈ A and bi ∈ B for
1 ≤ i ≤ l. Assume that for each i, the matrix φ0(ai) has a nonzero 2,1 entry and φ0(bi) is hyperbolic.
If t is transcendental over the entry field of φ0(A ∗C B), then φt(w) is not finite order.

By entry field of a group Γ of matrices, we mean the field generated over Q by the collection of all
entries of matrices in Γ.

Remark 2.2. Lemma 2 of [DeBlois and Kent 2006] is a proof that φt(w) is not the identity, under
the assumptions of Lemma 2.1. We use some of their work in our proof.

Proof of Lemma 2.1. DeBlois and Kent show by a straightforward induction (we leave it as an exercise)
that under the hypotheses of Lemma 2.1, the entries of φt(w) are polynomials in t such that the degree
of the 2,2 entry is l, the degree of the 1,2 entry is at most l, and the other entries have degree at
most l − 1. Now suppose that φt(w) is finite order. Then it is conjugate to a matrix of the form(

u v
−v u

)
. where u = cos(θ) and v = sin(θ) for θ a rational multiple of π. In particular, it follows from

the deMoivre formula for sine and cosine that u and v are algebraic.
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Now suppose that the matrix conjugating φt(w) to
(

u v
−v u

)
has entries aij . Then we have

φt(w) =
(
u− (a12a22 − a11a21)v (a2

12a
2
11)v

−(a2
22a

2
21)v u+ (a12a22 + a11a21)v

)
Looking at the 2,2 entry we see that a12a22 + a11a21 must be a polynomial in t of degree l. But
this means that the 1,1 entry is also a polynomial in t of degree l, contradicting Deblois and Kent’s
calculation. This proves the lemma.

To complete our construction, choose any t ∈ R that is transcendental over the entry field of
φ0(A ∗C B). We want to show that no power of an element representing a simple closed curve lies
in the kernel of φt. To this end, consider any word w in A ∗C B that has a simple closed curve as a
representative. There are three cases to check.

Case i) w is a word in A alone
In this case φt(w) is not finite order, since φt(A) is Fuchsian and therefore injective.

Case ii) w is a word in B alone
Theorem 5.1 of [Birman and Series 1984] states that w can be represented by a simple closed curve
only if it has one of the following forms after cyclic reduction:

1. w = x±1 or w = y±1

2. w = [x±1, y±1]

3. Up to replacing x with x−1, y with y−1 and interchanging x and y, there is some n ∈ Z+ such
that w = xn1yxn2y...xnsy where ni ∈ {n, n+ 1}.

The heuristic for case 3 of the Birman-Series theorem is shown in Figure 2 – if w is represented by
a simple closed curve and terminates with xnsy, this forces the rest of the curve representing w to
wind around the punctured torus in a set pattern. The figure shows the behavior for ns = 4.

p p p

w = x4y w = x4yx5y w = x4yx3y

Figure 2: Simple closed curves on the once punctured torus
Assume the puncture is at the vertex, x is represented by a horizontal loop
oriented from left to right, and y is a vertical loop oriented from bottom to top.

By construction, no word of type 1, 2 or 3 above is finite order provided that αsβk 6= 1 for any
integers s and k other than zero – indeed, we only need to check words of type 3, and these necessarily
have trace equal to αsβk +α−sβ−k for some s, k 6= 0. Since cyclic reduction corresponds to conjugation,
no word in B has image a finite order element.

Note also that, in particular, under the condition that αsβk 6= 1 for s, k 6= 0, all type 3 words are
hyperbolic. We will use this fact again later on.
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Case iii) general case
If w is a word with both A and B, we claim that it can be written in a form where Lemma 2.1 applies.
To write it this way, take a simple curve γ on Σ that represents w and has a minimal number of
(geometric) intersections with c. We can write γ as a concatenation of simple arcs γ = γ1δ1γ2δ2...γnδn
with γi ⊂ ΣA and δi ⊂ ΣB . Since we chose γ to have a minimal number of intersections with c, no arc
γi (or δi) is homotopic in ΣA (respectively in ΣB) to a segment of c – if it were, we could apply an
isotopy of Σ supported in a neighborhood of the disc bounded by the arc and the segment of c to push
the arc across c and reduce the total number of intersections.

Now choose a proper segment c′ of c that contains both the basepoint p and all endpoints of all γi

and δi, and close each of the arcs γi and δi into a simple loop by attaching a segment of c′. If ai ∈ A
and bi ∈ B are represented by the loops γi and δi, then a1b1a2b2...anbn = w in π1(Σ).

Since no arc γi or δi was homotopic to a segment of c, no ai or bi is represented by a power of [c] in
π1(Σ). We claim that in this case a1b1a2b2...anbn satisfies the hypotheses of Lemma 2.1. Indeed, since
φA is Fuchsian, the only elements with a non-zero 2, 1 entry are powers of [c], and the Birman-Series
classification of simple closed curves on Σb implies that the only simple closed curves which are not
hyperbolic represent [c] or [c]−1.

It remains only to remark that the representation φt is non-injective and that, by choosing
appropriate parameters, we can produce uncountably many nonconjugate representations. Non-
injectivity follows immediately since φt(B) is solvable so the restriction of φt to B is non-injective.
Now for any fixed α and β (satisfying the requirement that αsβk 6= 1 for all integers s, k), varying t
among transcendentals over the entry field of φ0(A ∗C B) produces uncountably many non-conjugate
representations that are all non-injective, but have no power of a simple closed curve in the kernel.
This concludes the proof of Theorem 1.2, assuming that the surface was not the punctured torus.

The punctured torus case is now immediate: any representation of the form of φB where αsβk 6= 1
for any integers s and k is non-injective and our work above shows that no element represented by a
simple closed curve has finite order. Fixing α and varying β produces uncountably many non-conjugate
representations.

3 Non-orientable surfaces

Recall that the genus of a non-orientable surface Σ is defined to be the number of RP2 summands in a
decomposition of the surface as Σ = RP2#RP2#...#RP2. A closed, non-orientable genus g surface
has Euler characteristic χ = 2− g.

Let Σ be a non-orientable surface of negative Euler characteristic and non-orientable genus g ≥ 2,
not the punctured Klein bottle nor the closed non-orientable genus 3 surface. The same strategy as
in the orientable case can then be used to produce uncountably many non injective representations
π1(Σ) → PGL(2,R) such that no power of a simple closed curve lies in the kernel. In detail,
our assumptions on Σ imply that we may decompose Σ along a (2-sided) curve c into a genus 1
orientable surface ΣB with one boundary component and a non-orientable surface ΣA of negative Euler
characteristic.

We define φB exactly as in the orientable case, but now consider the matrices as elements of
PGL(2,R) rather than PSL(2,R). We let φA : π1(ΣA)→ PGL(2,R) be a discrete, faithful representa-
tion such that φA([c]) = φB([c]). As in the case of the orientable surface, we may take this to be a
representation corresponding to a complete hyperbolic structure on Σ. Define φt : π1(Σ)→ PGL(2,R)
by “gluing together” φA with a conjugate of φB by λt exactly as in the orientable case. The proof now
carries through verbatim; for none of the topological arguments that we used required orientability of
ΣA. We also reassure the reader (who may be unfamiliar with lattices in PGL(2,R)) that powers of
φA([c]) are indeed the only elements of the image of φA with 0 as the 2,1-entry.

This strategy does not cover the case of the punctured Klein bottle, which cannot be decomposed
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with a T 2 summand, nor the closed non-orientable genus 3 surface, which decomposes as T 2#RP2. It
would be interesting to try to cover this case in a manner analogous to the punctured torus case of
Theorem 1.2 by providing a classification of simple closed curves on these surfaces. Indeed (as the
referee has pointed out) the punctured Klein bottle case is not too difficult. The closed, non-orientable
genus 3 surface case appears to be more challenging.
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[Kirby 1993] “Problems in low-dimensional topology” in R. Kirby, ed. Geometric Topology. Athens,
GA, 1993.

[Louder 2011] L. Louder “Simple loop conjecture for limit groups” Preprint. arXiv:1106.1350v1

[Minsky 2000] Y. N. Minsky “Short geodesics and end invariants” In M. Kisaka and Se. Morosawa,
eds. Comprehensive research on complex dynamical systems and related fields, RIMS Kôkyûroku
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